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EQUATION OF STATE #2084
AT ULTRAHIGH DENSITIES

PART 2

V. Canuto

NORDITA, Copenhagen and Institute for Space Studies, Goddard Space Flight Center,
NASA, New York, NY 10025

Ah, but a man’s reach should exceed his grasp, or what’s a heaven for?
Browning

1 INTRODUCTION

In Part 1 of this review (Canuto 1974) we analyzed the present knowledge about
the behavior of matter at densities up to a few times nuclear density. We
concluded by presenting in Tables 5 and 10 the best relations P = P(¢) for a
system of pure neutrons in the region 10* < p <2 x 10** g cm 3. In this second
part we review the work done so far in the high density region p > 2 x 10'* gcm 3.

First, we review the work concerning the appearance of hyperons at densities
higher than nuclear density and their influence on the equation of state. Second,
we review the work concerning the possible existence of a solid neutron core.
The hypothesis that a liquid of neutrons could solidify at high enough densities
has recently been the subject of several microscopic detailed computations;
the present state of the art is discussed. In Section 4 we discuss several (so far)
unrelated attempts to describe the behavior of matter in the relativistic region,
that is, at densities greater than 10!® g cm™3. All the studies of this region
published so far deal with a relativistic liquid of neutrons; should the neutrons
indeed solidify at lower densities, the previous relativistic treatment ought to be
modified.

One of the most disturbing features of the superhigh-density region is the
disagreement in the predicted value for the velocity of sound ¢ (in units of ¢) in
the relation P = cZe. Some theories predict c? — 1, whereas others predict c2 — %
(free particles) or even lower values.

The available data regarding neutron stars, in particular the moment of inertia,
are shown in Section 5 to be insufficient to pin down a specific value of the
velocity of sound at superhigh densities. A possible answer is found, however,
by analyzing the multiparticle production in the high-energy proton-proton (p-p)
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scattering. The Landau hydrodynamic model is reviewed and it is found that the
value ¢ — 1 seems favored, thus providing a way of continuing the equation of state
into the superhigh-density region.

2 THE HYPERONIC LIQUID
2.1 Generalities

After the clusters of neutrons and protons that form the crust of a neutron star
have dissolved at a density around 10'* g cm™3, the system is left in a state
composed predominantly of neutrons. If one neglects the possible existence of other
particles, like hyperons, the treatment of a pure neutron fluid has already been
presented in Section 5 of Part 1, with the corresponding equation of state given in
Table 10 (1). If the treatment of the region p > 2 x 10** g cm ™3 as a fluid of pure
neutrons is a good approximation, it is nevertheless true that physically the
situation is much more complex, due to the energetically favorable appearance
of hyperons. Before going into any detail, it is important to summarize the results
by saying that all the computations of the hyperonic liquid published so far have
reached the same conclusion, that is, the equation of state is not severely altered
from the one corresponding to a pure neutron gas. This statement has to be
taken with extreme care. The fact that almost all the computations reach the same
conclusion does not make that conclusion necessarily right. In fact, all the computa-
tions share the same defect: the hyperonic potentials are taken to be almost
identical to the nucleon-nucleon (NN) case. Should future studies of the hyperonic
forces reveal unexpected features, the equation of state could be drastically
changed. From the historical point of view the first to recognize that hyperons
could be present were Cameron (1959) and Ambartsumyan & Saakyan (1960).
Salpeter (1960) concluded on general grounds that X~ should appear first, a
conclusion confirmed by all the detailed computations published since.

2.2 Formulation of the Problem

Consider a system composed of k different species, characterized by a concentra-
tion n,. We want to find n, subject to the condition that the total number of
baryons is constant and that the total charge of the system is zero. The problem
is solved by evaluating a simultaneous set of chemical potential equations obtained
by minimizing the Gibbs free energy. For instance, for a system of e™, n, p, A, Z,
these equations read

Hn = H,- 1+ Hp, Ug- = tyt+H,-,
HA = i, Hso = [y, Us+ = Hn— He-.

21

We can easily find some interesting results even without knowing the exact form
of the u’s. For example, at a density of 2.39 x 10'* g cm™3, u, = 103.57 MeV,
tn = 20.37 MeV+m, c?, and p, = —81.92 MeV +m,c* [Table 2 (Part 1)]. The
first relation (2.1) is satisfied. If there is no interaction among the particles, the
minimum value of u is just the rest mass. At 239 x 10'* g ecm™3, A cannot
exist as yet, because p, & myc® = 1115 MeV; even T~ cannot be present either;
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in fact, y,+ u, ~ 124 MeV +m, ¢? is smaller than my ~ 1190 MeV ; even worse is
the situation for X° and X*. Admittedly, these conclusions can be significantly
altered if account is taken of the potentials acting among the particles.

2.3 The Multicomponent Many-Body Theory

If we want to treat the particles in a realistic model, their attraction and
repulsion must be included in the computation. Two difficult problems immediately
arise:

1. The two-body potential between hadrons is considered known as long as we
deal with neutrons and protons. In fact, one has at hand many good potentials,
among which one of the favorites nowadays is the one constructed by Reid

2. The situation is very different for any two hyperons or even for the hyperon-
nucleon (Y-N) case. The experimental information is still insufficient to determine
the hyperonic potentials with the same degree of reliability as the nucleon-
nucleon case. No high-energy data exist on YY or YN scattering to allow
one to fix the parameters of the potentials in the high angular momentum
waves. No experimental information exists, for instance, about XX or AA
for the P waves, which, however, are of primary importance at high densities

The simplest possible choice for the hyperonic potentials consists in assuming
that they are the same as the NN case, if one excludes the one pion contribution.

Reasonable though it could sound, this procedure is by no means entirely
satisfactory, because it is known (Brown, Downs & Iddings 1970) from AN
cross-section and singlet (triplet) scattering lengths that much better results are
obtained if the AN scattering is considered to go *hrough an intermediate state
ZN: pions can then be exchanged. Besides, between two X’s, new mesons can be
exchanged that are not contained in Reid’s potential, for example, the K meson
with T = 3. An explicit example of how misleading this procedure could be will be
given in 2.4.4.

To improve upon this method, one has to employ a full meson-exchange
hyperonic potential, which, in principle, can be derived by the exchange of mesons.
Evidently the coupling constants entering into the final form of V;, cannot be
determined with the same accuracy as in the NN case. This point is discussed in
more detail below. For the time being, we proceed with the presentation of the
many-body formalism as if the potentials were indeed known. When the particles
interact with one another the general expression for u is

p = (2p2+m*chHV 2+ U(p), 22

where U(p) is the one-body potential felt by the particle with Fermi momentum p.
From Brueckner’s many-body theory (Brueckner et al 1968), we know that the
one-body potential felt by the particle i is given by

2m)*U(p) =j lp? dp [ K(pi/p;)—exch] + ZJ p; dp; K(pi/p)). 23
0 1%iv0
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In the first integral we integrate over the particle j, which we take to be of the
same kind as i. The second integral refers to the interaction of i with a second
particle j, when j is of a different nature. Because the particles are then distinguishable,
the Pauli principle does not apply and therefore there is no exchange. Each integral
over p; runs up to p, where p, is the Fermi momentum of the species I. Evidently,
the various Fermi momenta are the unknown of the problem, since they are
related to the concentrations.

The K-matrix is proportional to the matrix element of the two-body potential,
taken between the perturbed and the unperturbed wave functions. The perturbed
wave function is in turn the solution of an integral equation (Schrodinger equation
with the appropriate boundary conditions), whose Green function is again given

107
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Figure 1 Concentrations of a free hyperonic liquid vs baryonic density, as from the work
of Ambartsumyan & Saakyan (1960).
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in terms of the one-body potential U(p). This self-consistency is the most important
feature of the Brueckner many-body theory.

If it is difficult to handle such a feature in the nuclear matter case where there
are only ncutrons and protons, it is clear that it becomes a tremendously involved
problem when we want to deal with say 8 or 10 different species. Unfortunately,
none of the results for the hyperonic liquid published so far has treated this
essential feature in a satisfactory way.

2.4  Review of the Results

24.1 THE WORK OF AMBARTSUMYAN & SAAKYAN (1960) When the particles are
noninteracting, the system 2.1 can be solved almost analytically. Ambartsumyan &
Saakyan (1960) solved such a system by considering n, as the independent variable,
instead of the customary baryonic number density, nz. We have repeated the
computation by solving the system of equation 2.1 as a function of ng, in order
to make the future presentation of other results easier. We have considered
eight variables: e™, u~, n, p, A, Z° X7, and Z*. In the absence of interaction the
chemical potentials are given by 2.2, with U(p) = 0.

The system 2.1 must be solved simultaneously with the constraint of charge
and baryonic number conservation

e+ +E  =p+XF,  n+p+A+Z=np 24

where the symbol of a particle stands for its numerical density. The results of
Ambartsumyan and Saakyan are shown in Figure 1.

24.2 THE WORK OF LANGER & ROSEN (1970) The Levinger-Simmons NN non-
local potential, equation 3.9 (1), was adopted for any two hadrons. We do not know
at present if this assumption is correct. The hyperon-nucleon data at low energy
indicate that the YN potentials are rather different from the NN potentials, as
indicated in Figure 3. The authors considered the following particles: n, p, e,
u X7, 2% 2% A7, and A

The treatment was based on a Hartree-Fock definition of the one-body potential
U(p); no self-consistency requirement was employed nor was a multicomponent
many-body theory as outlined before. The results are shown in Figure 2. The
first hyperon to enter is indeed X7, and its appearance is accompanied by a
decrease in the number of electrons. This is clearly due to charge conservation,
because one can use X~ to counterbalance the proton charge. X~ are more
advantageous than e, which are rather expensive due to their small mass:
their energy goes up rather fast with density, because they lack any attractive
interaction to lower the energy.

The Levinger-Simmons potential is given in two different versions, the so-called
V, and V; potentials, that differ slightly in their analytic behavior. The results
presented here correspond to the choice of ¥, the alternative choice giving rather
similar results.

As we said before, these results can substantially change if the potentials are
treated more realistically and the many-body effects are included.
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Figure 2 Hyperonic concentrations vs matter density as from the work of Langer &
Rosen (1970).

24.3 THE WORK OF BUCHLER & INGBER (1971) Were it not for the limited number
of particles employed, the work of Buchler & Ingber (1971) would be a considerable
improvement upon the previous work, in that it is based on a self-consistent many-
body calculation with realistic potentials. The two-body potential used was the
one previously derived by Ingber & Potenza (1970), based upon a phenomenological
meson-nucleon Lagrangian. It is nonlocal, that is, it contains momentum-dependent
terms and has a vanishing tensor force at short distances. The potential was
checked against nucleon-nucleon phase shifts, the quadrupole moment of the
deuteron and binding energy of nuclear matter. The authors included the following
particles: n, p,e”, 1, and n~, and performed the calculation in the density region
2.5 x 1037 £ ng < 3.55 x 10*® cm 3. Their results were presented in Figure 12 of
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Part 1 because they constitute a continuation of the structure after the coalescence
of the nuclei of the crust.

The flattening of the concentration of u~ at np = 2.66 x 10°*® cm™3 is entirely
due to the presence of pions. However, the pions are not treated correctly
because their strong interaction with nucleons, repulsive in S-state and attractive
in P-state, has been ignored.

The real progress with respect to the previous work lies in the self-consistency
requirement; the concentration of each species depends on each of the other
species and not only on the average matter density.

244 THE WORK OF PANDHARIPANDE & GARDE (1971, 1972) In a first paper,
Pandharipande (1971) studied the composition of a baryonic liquid using a many-
body theory based upon Jastrow’s variational approach: the two-body wave
function was taken as satisfying a simplified form of the Bethe-Goldstone equation,
in which the complicated inhomogeneous term, representing the Pauli principle,
was omitted but simulated by imposing a healing condition. Instead of a state-
dependent correlation function, an average was used and only its spin dependence
(singlet or triplet) was introduced.

The one-body potential U(p) was assumed to depend only upon the total
density. Because it has been stressed that the density dependence of U(p) is a
complicated function of the concentration of each species, the approximation
used in this work is far from exhaustive.

Three models were studied with different choices for the constituents and the
potentials. In particular:

A npANZAe ,u
B np AZe ,u”
C npANZAe ,u.

In A, the same interaction was used for any two baryons. In B, the A hyperons
were excluded, but otherwise the potential was the same as in 4. The potentials
were assumed to be purely central and, in particular, between two hyperons or a
hyperon and nucleon they were taken to be (x = 0.7r).

4x Tx

1=0 V()= —1650.6%—+ 6484.2
X X
e—4x e*6x
[=o0dd V()= —933485 —+ 415115 2.5
e_2x e—4x e-—7x
[=even, #0 V() = 123225 ——11126° — +64842° —.

To check the validity of this assumption we have used equation 2.5 (I =0) to
construct the AN cross section for center of mass energies up to 20 MeV and the
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results are shown in Figure 3. The curve A is obtained by using equation 2.5,
whereas curve B is obtained by employing a meson theoretical potential. The
potential 2.5 gives a rather poor fit to the experimental data.

As far as the [ # 0 waves are concerned, one cannot make the same statement
or for that matter any statement because we do not possess the high-energy data
to determine the strength of the P and D waves. However, if these potentials are
compared with the ones obtained by exchange of heavy mesons after using a
phenomenological hadron-meson Lagrangian, the result is found that the former
potentials are on the average too repulsive.

In case C, it was recognized that the AN interaction (as well as the AA)
cannot be as strong as the NN case, because the AN system does not form a
bound state (Brown et al 1970). To this end, an arbitrary factor of % was
introduced to decrease the attraction when dealing with hyperons. As pointed out
by the author himself, this reduction of 109 has no theoretical basis: it is simply
a change of an order of magnitude to study the sensitivity of the concentrations.

Even though a multiplicative factor is quite arbitrary, a more justifiable number
would actually be either 3 or § as explained below. Model C is at any rate
more credible than either A or B.

It is important to notice that the energy per particle has a rather strange behavior
in models 4 and B, because it decreases with density, indicating a negative
pressure. Such a strange behavior is not present in model C, which, as we said,
is slightly more realistic. The sensitivity of the concentrations upon the form of the
potential was checked in another paper by Pandharipande & Garde (1972), who
introduced tensor forces into the problem. The resulting composition is shown in
Figure 4.
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Figure 3 'The AN scattering cross section as computed by the author (unpublished). Curve
A is obtained using V(r) as given by 2.5. The fit is rather poor. Curve B is obtained by
using Canuto & Datta (1974) hyperonic potential.
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The energy per baryon in C is slightly smaller than in the pure neutron case,
but the pressure vs energy-density relation is not sensibly altered. This is the first
indication that the hyperonic liquid might not have a great effect in determining
the mass and the radius, even though it can be important for the dynamics of the
star. As an example, we can quote the work of Langer & Cameron (1969), who
showed that the vibrational energy of neutron stars with hyperons is damped very
rapidly (on an astronomical scale). For example, a neutron star with p, > 2.6 x
10'* g cm ™2 will not sustain vibrations.

24.5 THE WORK OF MOSZKOWSKI (1974) The problem of self-consistency was not
solved in this paper either, but at least its importance was fully appreciated and
several physical hypotheses were introduced to account for its presence. It was
explicitly recognized that the potential felt by any particle should depend not only
upon a second particle, but also upon a third one and so on and even more so at
high density, where the Pauli principle loses its importance and the short-range
repulsion becomes of primary importance through the dispersion effect. A many-

i A
| A°
, A+_
[} T
- ;N
i A,
[ p)
g‘
10"
Tl
\—Ix -
[y
'0-2:_
I _
10 /i ;
" / 4} ‘l I’
i / P - ,
A
- w EAASAS A
0 1o} | 10
n_(fm3)

B

Figure 4 Hyperonic concentrations vs baryonic density as from Pandharipande & Garde
(1972).
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body treatment of the type explained before was adopted, but the problem of full
self-consistency was avoided by choosing a specific form for the G-matrix between
any two baryons. This was done in the following way: when the system is composed
of only neutrons and protons, the G;;’s (i, j = n, p) are taken to be dependent upon
n,+n, However, when hyperons are present, the extension is not trivial and the
author pursued the calculations using two different parameterizations for the
density dependence of the G-matrix. In the first one, he chose (a)

G,p(n,p, X, etc) = G, [n+p,p/(n+p)]
Gys(n,p, Z,etc) = G, [n+%,Z/(n+3)]

for identical baryons, and
min (ni + nj):l

GijEan[ni+nj; nn,
t J

for unlike particles.
A second parameterization was chosen by virtue of which the G-matrix depends
upon the total baryonic number, that is, (b)

Gnn(n’ p, Z’ etc) = Gnn(nBr n/nB)
G,p(n,p, Z, etc) = G, p(ng, ny/np)
Gzz(n.p, X, etc) = Gpp(np, nz/ng)

for identical particles, and
Gni = an(nB’ ni/nB)
Gij = Gypnp, {m-+n;}/ng) (L,j#n)

for unlike particles.

Choices a and b reduce the knowledge of any G,; to the knowledge of G,,
G,,, and G,,, the neutron-neutron, proton-proton, and neutron-proton G-matrices.
These were taken from unpublished work of T. Sawada and C. W. Wong, who
extended their original nuclear-matter program to the case of unequal numbers of
neutrons and protons.

Four tables are given by the author for the quantities G,,, G
G, (T = 1), for four values of y defined as

Gup(T =0), and

rp’
— _ 111
y(nn+np) =N, y= 05_6,'59—2

and six values of g, defined as
203 =3n*(n,+n,) Q=051,152253.

In the Sawada-Wong extension of the n # p case, the self-consistency was not
fully accounted for in that the single-particle energies entering in the Green’s
functions were parameterized in a form dependent upon three coefficients fitted to
the nuclear matter case (y = %) and pure neutron case (y = 0).

As far as one can see, the self-consistency problem was treated, if not exactly,
at least extensively enough to give one the feeling that the sensitivity of the
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problem to this aspect has been brought to light. Evidently a final answer can be
obtained only after a fully self-consistent approach has been made.

The second serious difficulty encountered by Moszkowski concerns the potentials
involving hyperons. Here too, the author decided that, lacking any fundamental
approach to the problem, the most sensible way to proceed was to test the results
under different assumptions.

The most obvious one is to suppose that the interaction between any two like
(or unlike) baryons is the same as the one between p—p (or n—p). This will be
referred to as choice 1. We have already discussed the poor fit given by such a
hypothesis to the AN cross section. It suffices to mention that such a postulate
(combined with either choice a or b of the G-matrix) gave rather strange results,
for instance, negative energy or negative pressure.

These results are a clear indication of something that we already knew : hyperonic
forces are essentially different from nucleon-nucleon forces. Faced with this problem,
Moszkowski altered the Reid potential in a clever way to incorporate the different
nature of the mechanism of exchange of mesons occurring when we deal with
hyperons (choice 2). It is known that the intermediate part of the NN potential
is dominated by the exchange of a two-pion system. Traditionally this effect
is simulated by the exchange of a s-meson. According to the quark model a =°
is made of

2712(nn— pp),

where n is a neutron quark, and 7 is an antineutron quark. Given a vertex containing

the same hyperon (in and out), the coupling constant for A and X is then %

Table 1 Models 2a and b of Moszkowski (1974)2

E/A
Hg n P ZT+AT A (MeV)
Model 2a
0.068 0.065 0.003 0 0 7.67
0.131 0.124 0.008 0 0 11.6
0.228 0.164 0.035 0.029 0 134
0.362 0.219 0.074 0.069 0 14.0
0.541 0.279 0.132 0.129 0 224
0.770 0.365 0.203 0.202 0 482
1.056 0.450 0.303 0.303 0 99.7
1.825 0.757 0.534 0.534 0 335
Model 2b
0.068 0.065 0.003 0 0 7.67
0.228 0.196 0.021 0.010 0 17.4
0.541 0.404 0.075 0.062 0 50.1
1.056 0.824 0.131 0.101 0 174
1.824 1.625 0.166 0.033 0 457

2The baryonic density and concentrations are in particles fm~3.
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as large with respect to N or A because A and X contain two, whereas N and A
contain three, nonstrange quarks. Thus the reaction matrix for AP scattering is %
of NP and the one for AA is % of the one for NP. This factor is sensibly different
from 1y employed before. As an example, Reid’s S, potential has a depth of
~90 MeV, whereas for AN derived from meson exchange it is only ~60 MeV,
a factor of about 2. The numerical coincidence indicates that this line of reasoning
contains some truth.

The resulting energy per baryon and relative concentration of each species vs
the baryonic number are presented in Table 1, for the choices 2a and b. For the
reasons given before, the choices 1a and b seem less credible than the others.
Between 2a and b there is a difference in the density dependence of the G-matrix
and at the time of this writing it is difficult to decide with certainty in favor
of any of them. The relative concentrations are presented in Figure 5.

24.6 THE WORK OF BETHE & JOHNSON (1974) As we have repeatedly stressed, the
most important ingredient in any many-body computation is the NN potential.
This is no place to discuss this topic; it suffices to say that among the most
simple forms so far proposed, the one published by Reid has been most successful
in fitting the experimental phase shifts. Reid’s potential is a superposition of
Yukawas of different strengths and ranges, and even though the analytic structure
is highly suggestive of those derived theoretically from meson theories, still its purely
phenomenological nature is evident in the fact that one cannot write it in the
general form

Viss(r) = VAr)+ V,6,- 62+ Vp S1o+ Vis LS+ 1,(L-S)?, 26

but one must be content with apparently unrelated forms for each partial wave.
On the basis of the meson theory of nuclear forces, the w-vector meson should
dominate the behavior of Vig,(r) at short distances. Moreover, because w is
(vector) isoscalar, the core should be the same in all states, the range of it should
correspond to that of the w’s, and finally the strength of it should be given by the
w-coupling constant. None of these features is present in Reid’s potential. Because
at high densities the behavior of the core is of critical importance, Bethe and
Johnson undertook the task of rebuilding an NN potential that would satisfy the
previous requirements. In Table 1 of their paper, five sets of coefficients C, and
n are given, entering in the definition of the Bethe-Johnson potential (x = 0.7r):

Viss(r) = 3. Co(LSJ)

e—nx

+Vr(r). 27
X

The coefficient C,; and the tensor V; are taken from the one-pion-exchange
model.

The new potentials reproduce experimental phase shifts, nuclear matter binding
energy, and deuteron quadrupole moment as well as Reid’s. The work of Bethe and
Johnson consists of two distinct parts: 1. determination of the ground-state energy
and therefore equation of state for a pure neutron gas; and 2. derivation of the same
properties when hyperons are present. Let us first discuss the results for a pure
neutron liquid.
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The many-body technique employed is the lowest-order constraint variation
(LOCYV) as developed by Pandharipande (1971). It is stated by the authors that
such a method is a good approximation of the more exact treatment developed
by Pandharipande & Bethe (1973) and, moreover, that LOCYV is entirely satisfactory
for numerical calculations. We shall see, however, how recent computations have
shown that this is indeed not the case and that such a method gives too large an
energy when compared with an essentially exact Monte Carlo computation. Let us
first present the results and then discuss this point.

Five different models have been studied and we cannot but give the summary of
their results. For Model I an average process was used, whereby only even and
odd potentials were used for any two baryons. The resulting equation of state
reads (ngin fm 3, Eg in MeV, P55 in units of 1033 dynes cm™2; x = np, a = 1.54)

Ep = 236x%, P35 =5831x*"1, ¢ = x(1.01+0.648x%) . 28

When compared with the values for a pure neutron gas, given in Table 10 (Part 1)
obtained by using Reid’s potential, equation 2.8 gives values consistently larger.
For example, at ng =1, we read from Table 10 (Part 1) that Ez = 15747 and
P35 =4.029, whereas Model I predicts Ep = 236 and P35 = 5.831. The present
equation of state is much stiffer. Moreover, the velocity of sound ¢, exceeds the
velocity of light at ng = 1.98 fm 3. In Model II, the average over the potentials was
not performed and a more correct evaluation was carried out of the 3P, waves.
The resulting energies were much lower than in Model L, but still higher than those
of Table 10 (Part 1).

Model III yields results very similar to Model II, the main difference being the
treatment of the 1P, wave, that is here less repulsive. Again, Ejy is higher than that
given in Table 10 (Part 1).

Models IV and V are interesting in that the range of the repulsion corresponds
exactly to m,, ¢/h = 3.85. Model V has a less repulsive core in even states and a more
repulsive core in odd states with respect to Model IV. The resulting energies for
particles do not differ significantly as shown in Table 2, where the results of all
the models are collected. The same many-body technique was employed by the
authors to study a hyperonic liquid composed of p, A, £, and A. The hyperonic

Table 2 Energy per particle (MeV) for neutron (N) and hyperon (Y) liquids following
different models of H. A. Bethe and M. B. Johnson (1974)

11 111 v v Reid
ng
(fm3) N Y N Y N Y N Y N
0.5 65 65 63 63 61 61 63.5 63.5 57
1.0 189 189 185 189 181 191 191 185 156
2.0 610 690 590 560 560 575 570 480 490

4.0 1890 1920 1810 1610 1580 1450 1650 1200 1450
10.0 7500 7300 7200 6200 6600 5900 6000 4000 —
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potential was constructed in the following way: the authors define an even- and
an odd-state potential such that the even one is the same as the D, potential
for the NN case and the odd one is a spin-isospin average of the P, states NN
potential (less OPEP).

The authors do not give a numerical comparison of the results that such
potentials would yield for experimental hyperonic data such as the one presented in
Figure 3 for the AN cross section and we are therefore in no position to judge
the reliability of such a hyperonic potential. Granting, without justification, that
one can use the NN potential in some way, the even state has been chosen here
more correctly than in Pandharipande (1971), because D, is less attractive than
18, and it therefore resembles more closely the true AN potential as derived from
meson exchange.

We feel less confident about the procedure used for the odd waves. In fact, it is
known that *P, for NN is repulsive at any distance, whereas the *P; theoretically

L |I||l|l 1 i L L L

T 1 101

Ny
0.1
0.01 i ool 1 [ N |
01 1.0 10
n

Figure 6 Hyperonic concentrations (in particles fm~2) vs baryonic density (same units)
as from the work of Bethe & Johnson (1974).
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derived (OBEP) for AN is attractive and repulsive. It therefore seems that the odd
potential used by Bethe and Johnson is too repulsive. The result for the ground-
state energy when hyperons are included is also given in Table 2 and the relative
concentrations (for Model V) are presented in Figure 6.

Before turning to the equation of state, we ought to comment on the many-body
theory employed. A hypothetical but indicative calculation for a pure neutron liquid
with a simplified potential of the form (x = 0.7r),

e—7x

Vx) = 6484.2

, 29
X -
has been recently solved by several groups, with the aim of revealing the
approximations used in the different many-body techniques so far adopted. If we
take the Monte Carlo results of Cochran & Chester (1973) as a gauge to judge
the other methods, the results are as follows (Figure 7):

1. The energies obtained by using LOCV of Pandharipande (1973) are higher than
the Monte Carlo energies up to 200 MeV at 3.2 x 10!° g cm ™3 (curve 1). The
LOCYV method has been employed by Bethe & Johnson (1974)

2. The many-body technique employed by Shen & Woo (1974) yields results
that never exceed the Monte Carlo energies by more than 25 MeV (curve 2)

3. The full variational method (and not just the LOCV) as developed by

MeV
E{LOCV)-E(M.C)
200
150 |
100 |-
50 |
/A—/”’_'@\fi“” & (sw
~3
0 | 1 1 l(fm )
05 10 15 2.0
(g-em?)
-50 L 1
167 10'° 334 10'°

Figure 7 Energy per baryon of a neutron liquid as from Pandharipande (1973) (LOCYV)
and Shen & Woo (1974). Both results are judged against the almost exact Monte Carlo
(MC) results of Cochran & Chester (1973). The LOCYV yields too high energy.
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Pandharipande & Bethe (1973) gives energies in agreement with Monte Carlo
results (H. A. Bethe 1974, personal communication)

In view of the much higher reliability of the methods employed in 2 and 3, it would
be highly desirable to repeat the Bethe & Johnson computations using the new
potentials but employing the more exact many-body formulation either in the form
2 or 3. An overall concern about the Bethe-Johnson potential is that the w-
meson coupling constant g2/4nhc is 22.1, 29.6, 47, 47, and 47 for models V, IV,
III, 11, and I, respectively. This has to be compared with the “experimental value”
of 10+2.

2.5 Concluding Remarks on the Hyperonic Liquid

Despite the considerable amount of work that has gone into the study of the
hyperonic liquid, none of the previous works can claim the same degree of reliability

Table 3 AN potential as derived by meson exchanges?

n(548, T = 0, Ps) k(495, T = 1/2, Ps)

n=278f"1 k=235f"1
Va' - 19.39(6—"’/7‘) +(—)L+S57.7(e""/r)
Vr — 58.18f(r)(e”""/r) +(—)ESIT33f (r) (e /r)

f(r)=%+036/r+0.13/r*

f(r)=%+043/r+0.18/r*

o(490, T=0,5) (888, T=0,V)
c=2481"1 w=451f"1
V. 1131.08(e™“"/r) +6815.03(e”“"/r)
Vs +0.98f(r)(e™7"/r) +[616.78—43.61f(r)] (e~ “"/r)
fr) = 0.402/r +0.32/r* +0.13/r* f(r) = 0.22/r4-0.09/r* +0.02/r>
Vr 0 —925.181(r)(e ~"/r)
f(r)=%+0.22/r+0.05/r*
Vis —135.901(r)(e™7"/r) — 5754491 (r)(e”“"/r)
f(r) = 0.40/r +0.16/r> f(r) = 0.22/r+0.05/r>
Vo —1.98f(r)(e”""/r) +87.23f (r)(e~“"/r)
f(r)=0.16/r*+0.13/r° f(r) = 0.05/r24+0.02/r
k*(890, T = 1/2, V)
k*¥=442f1
V. (—Y-*5552.41(e *¥7/r)
V, (— ) "5[353.10— 14782 £(r)](e~*"/r) f(r) = 0.22/r+0.10/r* +0.02/r*
Vr —(=)"3529.65f(r)(e™*"/r) £(r) = $+0.22/r+0.05/r
Vis —(—)-"51495.69 f(r)(e *"/r) f@r) =0.22/r+0.05/r*
Vo (—)*5295.65f(r)(e~¥"/r) f(r) = 0.05/r*+0.02/r>

aA, N potential: T = 1/2; V= I/c+ Voo-l Gyt VTS12+ VLSL. S+ VQ le,
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that characterizes that of the pure neutron liquid. One of the main reasons is the
inadequate treatment of the hyperonic forces. A full OBEP hyperonic potential
has recently been determined by Canuto & Datta (1974) on the basis of data
from Brown, Downs & Iddings (1970). The general potential is written in the form
2.6 and the contributions from the several bosons are listed separately. As an example,
we present in Table 3 the AN potential that was used in the construction of
curve B, Figure 3. The equilibrium calculations with such a potential, however,
have not yet been performed. As far as the many-body techniques are concerned,
Figure 7 clearly indicates that the LOCV should be replaced with either method
2 or 3 just mentioned.

A final criticism of all the previous computations has been raised by Sawyer
(1972). He has stressed the point that in deciding whether a given hyperon will
appear or not, a parameter equally as important as the potential, and perhaps even
more, is the mass shift that every hyperon acquires because of the dense surrounding
medium. In a model calculation for A™, Sawyer has shown that the mass shift is of
such a magnitude as to quench the appearance of A~ until densities higher than
106 g cm ™3 (see Figures 2 and 4). None of the previous computations has included
any mass shift and only when such an effect is thoroughly investigated and
embodied in the calculations can the previous results be totally trustworthy.

2.6 The Equation of State with Hyperons

We have already presented in Tables 11 and 12 of Part 1 two P = P(¢) relations
including hyperons. To these we should now add the one computed by Bethe and
Johnson. This is given in Tables 4a and b.

Moszkowski’s results [Table 12 (Part 1)] can be compared with either Tables
11 (Part 1) or 4 only numerically, because both the many-body theory and the
baryonic potentials are different. We have already commented previously about
the many-body theory employed in Tables 11 (Part 1) and 4. The same type of
comment cannot be made concerning Moszkowski’s theory. However, we feel that
as far as the hyperonic potential is concerned, his work is more realistic.

In view of the difficulties still plaguing all the hyperonic equations of state
published so far, it is our feeling that it is safer not to use any of them as yet
and consider the region >2 x 10'* g cm™? as a pure neutron liquid, thus using
Tables 10 (Part 1) or 4a of this paper up to a point where the relativistic effects
become important (see Section 4).

3 THE SOLID CORE

3.1 Generalities

The uncertainties in the results presented in the previous section, though important,
are of a rather technical nature, regarding both the similarity (or lack of similarity)
of the full hyperonic potential to the NN case and the so far little investigated mass-
shift effect. In both cases the physical idea is clear. Time and an extra good deal of
work will almost certainly clarify the situation. On the other hand, the region we
are about to discuss has been characterized by a much deeper, more fundamentally
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Table 4a Equation of state for a pure neutron gas after Bethe & Johnson (1974)

ng p & P
(fm~3) (gem™3) (MeV) (dynes cm~?) P/pc?
0.1 1.70 x 10'* 12.6 1.19 x 1033 —
0.15 2.55 x 101# 16.6 293 x 1033 0.013
0.2 3.42 x 104 21.2 6.00 x 1033 0.019
0.25 431 x 104 26.0 1.09 x 1034 0.028
0.3 5.20 x 104 322 1.83 x 1034 0.039
0.4 7.04 x 10'# 46.9 4.09 x 103 0.087
0.5 8.95 x 104 64.4 7.61 x 1034 0.095
0.6 1.09 x 1013 83.7 1.26 x 1033 0.128
0.7 1.31 x 1013 109.0 1.99 x 103 0.169
0.8 1.53 x 1013 1350 2.85 x 1033 0.207
0.9 1.76 x 10!3 160.0 3.71 x 103° 0.234
1.0 2.01 x 1013 190.0 492 x 1033 0.272
1.1 2.28 x 1013 224.0 6.23 x 1033 0.304
1.25 2.70 x 10%° 2740 8.58 x 1033 0.353
1.4 3.16 x 1013 327.0 1.14 x 103 0.401
1.5 3.48 x 10%° 360.0 1.34 x 10%¢ 0.428
1.7 4.19 x 10%3 4420 1.85 x 103% 0.493
20 535 x 1013 560.0 2.76 x 103° 0.574
2.5 7.70 x 10%3 788.0 4.83 x 103 0.698
30 1.06 x 1018 1040.0 7.62 x 103¢ 0.800

physical question. Do neutrons solidify at high enough density? We have so far
treated the neutrons and for that matter the hyperons as a liquid even though it
is perfectly legitimate to ask oneself whether the NN potential is strong enough to
force nucleons into a regularly arranged structure.

The old hard-core potential almost by definition gives rise to a solid structure
at densities of the order of ng = (37r2) L. In fact, because at these densities each
particle feels an infinitely strong repulsion everywhere around it, it is caged, and
such a localization leads to a crystalline structure. Such a potential is therefore of
no interest, in addition to having been superseded by more modern versions that
call for the existence of a soft core due to the exchange of vector mesons. With a
soft but infinite potential, like the ones constructed by Reid and by Bethe and
Johnson, it is not clear if the system will eventually crystallize, because the potential
can be too soft, can let the particles slip through it, and can never produce the
localization necessary for a crystal structure to set in, unless perhaps when the
distance is exceedingly small and the repulsion exceedingly high. If that is the
case, it could well be that a crystallization density exists but is so high that it is of
no interest even for the superdense interior of neutron stars. A third possibility is
that the repulsive potential is finite at the origin, that is, a gaussian type of potential
of the form proposed by the Japanese school (Otsuki et al 1964). If the gaussian
form is such that it provides enough repulsion to localize the particles, it will
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Table 4b Equation of state for hyperonic matter after Bethe & Johnson (1974)

ng P g P
(fm™3) (gecm™3) (MeV) (dynescm™?)
0.1 1.70 x 104 12.6 1.19 x 1033
0.15 2.55 x 104 16.6 293 x 10*3
0.2 342 x 1014 21.2 6.00 x 1033
0.25 431 x 10 26.0 1.09 x 1034
03 5.20 x 10** 322 1.83 x 1034
04 7.04 x 104 46.9 409 x 1034
0.5 8.95 x 101% 64.4 7.61 x 1034
0.6 1.09 x 103 83.7 1.26 x 1033
0.7 1.31 x 10%3 109 1.99 x 1033
0.8 1.53 x 103 134 2.84 x 103°
0.9 1.76 x 103 160 3.36 x 1033
1.0 201 x 1013 189 402 x 1033
1.1 2.26 x 10%3 215 5.02 x 1033
1.25 2.66 x 1013 254 6.76 x 1033
14 3.08 x 103 296 8.81 x 1033
1.5 3.38 x 1013 324 1.03 x 10%¢
1.7 401 x 103 382 1.38 x 1036
20 5.04 x 10*° 475 2.02 x 103¢
2.5 7.04 x 1013 640 3.40 x 103¢
3.0 9.38 x 10'3 815 5.20 x 103¢

cease to do so when the energy of localization, ¢ = Acn}? is greater than ¥, the value
of the potential at r = 0. For V=1 GeV, ng~ 10> fm™2, or px~ 108 g cm™3. It
isnot clear a priori whether a repulsive gaussian will produce a crystal, but if it does
it will be for only a finite interval in density. For densities such that ¢ > V,, the
crystalline structure ceases to exist.

Because the mesonic theories of nuclear forces indicate that, near the origin, the
potential provided by the w-meson has a Yukawa shape, in what follows we consider
exclusively such types of potentials.

The work on the solidification problem can be divided into two categories:
the first is of an exploratory nature, whereas the second is of a microscopic nature,
because it employs the best available nucleon-nucleon data and many-body tech-
niques. Before reviewing the work, we should perhaps comment on the results:

all but one of the computations so far performed indicate a solidification density
well within the range of the values expected in the interior of neutron stars, the
lowest being 5 x 10'* g cm™3 and the highest 3 x 103 g cm™3. We first review the
work in some detail and then critically summarize the results in Section 3.3.

3.2 Review of the Results

3.2.1 THE WORK OF CAZZOLA, LUCARONI & SCARINCI (1966) As far as this author
can recollect, this work represents the first published paper in which the idea of a

© Annual Reviews Inc. « Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1975ARA%26A..13..335C

FTI75ARACAL .“1337 “335TCh

356 CANUTO

solid structure was proposed and a model computation of the corresponding
equation of state was carried out. The authors do not actually show that a crystal
structure indeed occurs. They postulate that the nucleon-nucleon potential is repulsive
enough to produce a locahzation, which is then accounted for by assuming that
each nucleon is trapped in a finite region of space, characterized by a potential
U(r). The single-particle energies are found by solving a one-particle Dirac equation
in which U(r) is taken to be a square well. Once the eigenvalues are known, the
pressure is easily evaluated with the result

P = 0.32n410%° dynes cm™ 2, ' 3.1

where np is the baryonic number density (particles per fm?). This expression does
not join in any way to the values given in Tables 1012 (Part 1), giving P = 6.27
1038 dynes cm ™2 at ng = 1.4, as compared with 1.189 10® from Table 12 (Part 1).
The merit of the present work is clearly not in the expression for the equation of state,
but in its having pointed out a physically attractive alternative to the liquid
structure.

3.22 THE WORK OF BANERJEE, CHITRE & GARDE (1970) These authors performed
an exploratory computation of the equation of state for matter at high densities
by localizing the neutrons in a bec lattice and performing a classical lattice-dynamics
analysis. The interaction potential between two opposite neutrons was taken to be
an average of Reid’s 1§, potential and the repulsive part of the same wave. The
total energy 1s contributed by the rest energy, the static energy, and the vibrational
energy. This last contribution required an elaborate lattice-dynamics analysis.

In the spirit of classical lattice dynamics, the solid structure was thought to set in
when the oscillator frequency of each nucleon at its lattice site w, proportional
to the second derivative of the NN potential, becomes real. This occurred at 8 x 104
g cm 3, which was taken to be the solidification density.

If compared with the presently known E/N for the liquid state, the solid
energies so obtained are far too large. The comparison is not meaningful, however,
since the solid has been computed with zero-spread single-particle wave functions.
A fully quantum-mechanical computation was shortly thereafter initiated by Canuto
& Chitre (1973a,b), but before its completion, several other results appeared and
we review them first.

323 THE LAW OF CORRESPONDING STATES The approach to the problem of
solidification of neutron matter through the application of the so-called law of
corresponding states was first suggested by Anderson & Palmer (1971) (see also
Palmer & Anderson 1974). It is known that the potential between two rare gas
atoms can be represented by a 6-12 function of the Lennard-Jones type (LJ)

Vi) =4 {@12 ) @ 6} | ”

Because only two parameters, an energy (¢) and a length (o), are necessary to
specify a given substance, de Boer (1948) was able to show that the dimensionless
quantities
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V* = V/No?, kT* = kT, P* = Pg3/e 33

for several known rare gases fall in straight lines when plotted against the
quantum parameter A = h(mes>)~ Y2, nowadays known as the de Boer parameter.
If, in the same way, we were able to find the A corresponding to a system of
neutrons, then the solidification pressure would be readily found by simply looking
at the experimental (universal) curve P} vs A. By so doing, Anderson & Palmer
(1971) found the following result:

P,=04e0" 2 =4MeV fm ™3 =6.7 x 10**> dynescm ™~ 2; A ~ 34. 34

The similarity with He® (A ~ 3.5)is striking. The authors arrived at the result without
fitting an NN potential to a LJ function. This was later attempted by Clark &
Chao (1972), who constructed a density-dependent NN potential that is a superposi-
tion of 1S, and 'D, waves. When such a potential was fitted to a LJ form, the
following results were found :

P, =47 x 10°3 dynescm ™ 2; A =5.3. 3.5

The corresponding solidification densities can be found by continuing the P = P(g)
relation given in Table 10 (Part 1) with the solid structure. The results are

ps=37x 10" gem™3; p,=3 x 10 gcm™? 3.6

for Anderson and Palmer and for Clark and Chao, respectively. We critically review
these results in Section 3.3.

3.24 THEWORK OF COLDWELL (1972) In a paper submitted in April 1971, Coldwell
performed an exploratory computation with the goal of investigating whether a
simple Hartree-Fock computation would predict neutron solidification. The analysis
is incomplete with respect to the work described in the following sections, because
it neglects the distortion of the two-body wave function caused by the short-range
repulsion and accounted for by the introduction of a correlation function of the
type described in Section 5.2 of Part 1. An analogous computation was performed
years back by Nosanow & Shaw (1962) for *He. Without a correlation function,
the single particle energies are bound to be overestimated by a considerable
amount, as happened in solid *He.

The importance of Coldwell’s work lies in the fact that for the first time he
performed a double computation, that is, he treated liquid and crystal with the
same method, thus making the comparison meaningful. The novelty of this computa-
tion with respect to the ones performed before and even after is that the single-
particle wave functions were taken to be eigenfunctions of a fictitious potential

V(e, x) = ¢ sin? (nx/a). 3.7

For ¢ — 0, the single-particle wave function becomes a plane wave (liquid), whereas
for ¢#0, V(c,x) ~ x? as x—0. The corresponding wave functions are then
localized gaussians (solid). No analytic expression can be obtained for the ground-
state energies (computed using Reid’s potential) and the work has to be done entirely
numerically. The results can be summarized as follows: Up to a density of
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3.98 x 10!'* g cm ™3, the minimum of the energy is provided by a ferromagnetic
arrangement of the nucleons and not by a crystal. For densities higher than
3.98 x 10'* g cm™3, however, the minimum of the energy is given by localizing
the particles in a crystalline structure. The energies obtained by Coldwell are too
high when compared with the ones given in Table 10 (Part 1) and Table 2.
However, the absolute values for the energy of the liquid and solid are probably
off by the same amount and consequently the solidification pressure and density
can be considered to be correct.

3.2.5 THE WORK OF CANUTO & CHITRE (1973, 1974) The work presented so far has
clearly indicated that a full quantum-mechanical computation is needed to study
the solidification problem. This is a formidable task in that a microscopic computa-
tion can be considered conclusive only if performed simultaneously for liquid and
solid with the same many-body theory and the same potential, that is, the ingredients
must beidentical. There are essentially two many-body techniques presently available.
The variational method, extensively used for *He, has the unfortunate feature of
not lending itself to a straightforward handling of spin and angular momentum,
features that characterize the nuclear forces. On the other hand, it has the advantage
that by imposing certain restrictions on the correlation function, one can handle the
higher many-body contributions in such a way as to render their contribution
unimportant. There is in fact one computation for *He (Hetherington et al 1967),
where a restricted variational correlation function was chosen to make the three-
body clusters reasonably small. Even though this is a brute-force way of doing
things, at least one has an empirical way of making the cluster expression converge.
We must notice, however, that if the three-body contribution is a serious problem
for liquids it is perhaps of less importance for solids. '

In systems that are translationally invariant (i.e. liquids) the unperturbed wave
functions are usually taken to be plane waves. Brueckner’s theory is a low-density
expansion, and it is not obvious that such a method should work for solid hydrogen
or solid helium. Solid hydrogen has recently been studied by (Dstgaard (1971, 1972)
and the f-matrix approach (including up to two-body clusters) was found to work
rather well. This is partly due to the fact that instead of plane waves, one
employs gaussian wave functions, which already incorporate several correlations.
One can therefore hope that the cluster expansion up to second order will be
adequate for solids but not necessarily for liquids.

If the variational and t-matrix techniques are considered up to the second order,
the advantages offered by the i-matrix are clearly superior because the state
dependence of the NN potentials can be fully accounted for to any degree of
accuracy. On the basis of this last feature and the probable unimportance of the
three (and more)-body correlations for solids, Canuto and Chitre decided to adopt
the t~matrix method. Evidently the whole method can be judged only after having
tested it against a well-known quantum solid such as *He.

It is shown later that such a method actually produces the best E/N vs molar
volume so far published, the deviation from the experimental data being less
than 1°K.
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Even though the author is not aware of any such computation, it is almost
certainly true that the same method, when applied to a liquid, say, liquid *He,
would probably produce rather poor results. This poor performance has nothing
to do with the situation for the solid, however, where, as we have just said, it
works better (or equally well) than any other method. Evidently, the choice of a
method that works well for a solid and perhaps fails for a liquid violates the
requirement of handling liquid and solid with the same method. Once the energies
for the solid are obtained, the only way of determining if such a configuration
is actually solid, in the commonly accepted definition, is by studying its elastic
properties, that is, finding out if it has resistance against shearing stresses and if so,
for which density interval.

The results indicate that the shear modulus C,, is positive for densities greater
than (1-3) x 10'® g cm™?, thus providing a lower limit for the stability of a
neutron crystal.

Let us now consider a system of neutrons described by the Hamiltonian

H h Vi+iY W 3.8

= QmXi: i +’zigj ijr .
The Slater determinant for the system is built up of single-particle wave functions
of the gaussian form
3/2 2

N —a 5 mo
(i) = —aexp T[ri—Ri| , o = — 39

Here, R; is the ith lattice site around which the particle performs an oscillatory
motion under the influence of the remaining (N — 1) particles. The t-matrix expansion
gives the following expression for the energy per particle up to and including two-
body clusters:

E j‘l/’:'; Vi ¢ijd37‘i ds"j

L3y
N 4 w+§2N]lﬁ3¢ljd3r,d3rj

= %ha)-l—-%ansk. 310
k

Here ¢;; is the uncorrelated two-body wave function [ =¢(i) ¢(j)], whereas y;; is
the correlated two-body wave function to be determined by solving the homogeneous
Bethe-Goldstone equation (A = Ry —R,)

2

[%Vf-i—%mwz(r— A)* + V(r)] (1) = [—3ho—200)]y ). 3.11

The most difficult part of the problem lies in the solution of equation 3.11. In fact
the term r- A = rA cos 8, much like the Stark effect, couples even with odd waves.
If an angular momentum expansion is made of Y(r), then an infinite set of
coupled differential equations results.

All previous work that dealt with such an equation invariably averaged over
r- A, thus avoiding the angular-momentum problem.

To judge the t-matrix method and the handling of equation 3.11, the most
appropriate test is solid *He. In Figure 8 we present several results. For the time
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being the significant comparison should be made between the results of Guyer (1969),
who applied the method just described with the r- A ~ rA approximation, and the
results of Canuto et al (1974a), who expanded ¥ in its angular-momentum
components and solved a resulting set of 25 coupled differential equations. The
improvement on the previous result is significant. If the angular-momentum
expansion is important for *He, whose two-body interaction is spherically symmetric,
it is even more so when we deal with the NN case, where each partial wave has a
different potential.

It is clear that, if we perform an average over the solid-state term r- A, then we
have devoided the dynamic equation 3.11 of its more important features and any
study of the importance of the angular momentum dependence of V(NN) in the
solidification problem has been irreparably undermined in its credibility. For a
complete description of the neutron system we must also introduce the spin variables.
Equation 3.11 will then split into three sets corresponding to S =0, M, =0, and
S =1, M;= +1,0. Canuto and Chitre solved the three sets of 7, 13, and 18
coupled differential equations by including up to [ = 6. This was found to be large
enough for the system to be stable. An fcc configuration was found to be more
energetically favorable than a bec one.

The detailed results are displayed in Table S5, where we list 1. the baryonic
density, 2. the energy density, 3. the nearest neighbor distance A, 4. the spread
of the wave function «~?!, and 5. the energy per baryon in MeV and then the
elastic constants C;,, C;,, and C,4 in units of 1073 dynes cm™2. The first

E/N(°KH‘

1zor Solid He®
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Figure 8 Ground-state energy vs molar volume for solid *He as obtained by Canuto et al
(1974a). The results of Guyer (1969), Schiff (1973), and Pandharipande (1973) are reported
for comparison.
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Table 5 Results of the computation of V. Canuto and S. M. Chitre (1973, 1974)

ng p-101% A ot E(ng) Ci: Ci, Cua
(fm 3 (gem 3 (@m) (fm) (MeV) (10736 dynes cm ™ ?)

0.84 1.4 — — — 0.16 0.15 -0.03
0.96 1.6 — — — 0.40 0.24 0.03
1.09 1.83 1.089 0.342 163 0.89 0.37 0.09
1.44 24 0995 0312 216 2.65 11.07 0.48
2.0 334 0891 0278 322 6.78 297 1.47
2.63 4.4 0.817 0254 500 17.59 6.69 3.43
2.99 5.0 0.779  0.238 612 27.57 10.33 5.71

important observation is that the oscillation around a lattice site, o~ !, is only ~30%,
of the first neighbor distance, A. In view of empirical laws like the Lindenman
melting rule, there is no probability of such an oscillation producing an instability
and making the crystal disappear.

The stability against elastic deformation is studied by analyzing the behavior of
the elastic constants vs density, as shown in Table 5. It can be seen that the
shear modulus C, is positive only for p ~ 1.4 10'° g cm ™3, indicating that the fcc
structure of neutrons is actually a solid, that is, it can withstand shearing
stresses for densities higher than this value.

3.2.6 THE WORK OF SCHIFF (1973) Another way of studying the solidification
problem was devised by Schiff, who applied an idea of Wu & Feenberg (1962).
At relatively high density, the major feature of a system of nucleons is undoubtedly
the strong repulsion and probably not the Fermi statistics. One can therefore
treat the Pauli principle as a perturbation to a Bose system, for which it is hoped
that one can compute the ground state energy to good accuracy. The hypothetical
boson system is studied in two steps:

1. The repulsion is considered to be represented by hard spheres. Kalos,
Levesque & Verlet (1974) numerically solved the Schréodinger equation for a
system of 256 hard-sphere bosons. The results are in excellent agreement with the
previous results obtained using a Jastrow-type of wave function (Hansen et al
1971)

2. The second step is to treat the attractive part of the two-body potentials by first-
order perturbation theory. The hard-sphere ground-state energy is lowered by up
to 20%,. The most complicated part of the problem consists in taking into
account the Pauli principle (PP), and this is done following the prescription
of Wu and Feenberg

The solid phase is treated analogously, except that the corrections due to the
statistics are neglected. The final result is that a solid structure does indeed occur
at a density of (2940.5) x 10*° g cm ™3 and a pressure of (4.7 +1)103° atms.

If this method is applied to solid *He, one obtains the results presented in
Figure 8. Even though they are not as good as those of Canuto et al (1974a),
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still they have the very enviable feature of getting better as the density increases.
This is indeed very pleasing, even though it could be misleadingly interpreted as a
mark of merit for the method when applied to a neutron system. Such is indeed
not the case, because the background hard-core bosons that produce such good
results for *He cannot be considered as an appropriate basis for neutrons, whose
strong interaction is far from being a hard-core.

3.27 THE WORK OF NOSANOW & PARISH (1974) A different approach to the
solidification problem was adopted by Nosanow and Parish, who employed a
Monte Carlo technique to calculate the many-body effects of the short-range
correlations. The problem is formulated within the framework of the variational
approach, and we have on several occasions stressed the difficulties encountered
in extending such a method to cope with the angular-momentum dependence
of nuclear forces. The best one can do is to use a simplified force taken to be
a superposition of a singlet (1S,) and triplet potential V,(*P,). As in the case of
Coldwell’s work, the best feature of the work of Nosanow and Parish is that they
treat both liquid and solid with the same many-body technique. From the methodo-
logical point of view, this is a most welcome feature.

A
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Figure 9 Liquid-solid transition in a neutron liquid as from Nosanow & Parish (1974).
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The results of their computation are shown in Figure 9, where the liquid and solid
energies are plotted against density. The liquid-solid transition occurs around
44 x 10** g cm™?; the solidification pressure is ~10** dynes cm ™~ 2. These numbers
are in good agreement with the ones obtained by Anderson and Palmer and by
Clark and Chao but are much smaller than the ones obtained by Canuto and
Chitre and by Schiff.

Nosanow and Parish do not give any indication of how sensitive the results are
to the choice of potentials. Evidently there is more than one way to construct
a singlet and triplet potential, and the sensitivity of the results to the amount
of attraction could and should be checked. Such an analysis is still missing. More
recently the same method failed to find solidification when the potential was chosen
to be purely repulsive (Canuto et al 1974b). This has led us to believe that the
treatment has not been fully investigated from the numerical point of view.

3.2.8 THE WORK OF PANDHARIPANDE (1973) A variational approach to the solidi-
fication problem was employed by Pandharipande (1973) who, following van
Kampen (1961), expanded the ground-state energy E in clusters, truncated at the
second order

E =3ho+3Y Cyij). 3.12
ij

The term C, contains three parts. The first two do not involve the potential and
they almost cancel each other. The author requires that the third part, called I5,
be minimized. In this way one obtains a differential equation for y of the form

2
[— h_V2+zlgma)2(r—A)2+ V(r)] Y (r) = ay(r). 3.13
m

This is precisely equation 3.11 in the Canuto and Chitre formalism. The basic
idea of the computation consists in imposing reasonable restrictions on the correla-
tion function, f,y = ¢ f, so as to make the truncated expansion reasonable. Such
a method is called LOCV. In the next step, 3.13 is changed into an equation
for f, by filtering ¢ to the left.

We have already discussed how difficult it is to evaluate equation 3.11 because
of the strong angular-momentum dependence contained in the r-A term and in
V(r). The physical angular momentum is the one that characterizes y; by splitting
Y into ¢ f, one introduces two unphysical angular momenta [, I :

Y(r) = Zz: (Y = IZ ¢11 Y, IZ (1512 Yzz-

Because both quantities V(r) and r-A are operators in the angular-momentum
space that act on y,, their action on either Y;, or Y,, has no meaning. This in
turn implies that one cannot transport ¢(r) to the left of 3.13, to get an equation
for f. When the LOCYV is applied to the test case of solid *He, Pandharipande
obtains the results shown in Figure 8. The energies are much less satisfactory
than those of Canuto et al (1974a). Schiff’s results get better as the density increases,
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whereas Pandharipande’s get worse. This is rather surprising in view of the
fact that the basic merit of LOCV was precisely the ability to handle the high density
regime.

Having learned from the *He case the importance of the solid state term
r-A, we must doubt the validity of the subsequent application of LOCV to the
investigation of the importance of the l-dependence of V(NN) in the solidification
problem. For this reason we believe that the meaningful part of Table 6, where
Pandharipande explores the importance of the /-dependence of nuclear forces, is only
in the first and second case, where there is one potential for all partial waves,
either purely repulsive or slightly attractive. Case 3 cannot be considered definitive
in that the energies are too close. Case 4 is clearly in favor of a liquid instead of
a solid structure, however.

Even if the physical idea is correct, that is, that the presence of too much
attraction will favor the liquid, it is our opinion, based on the previously
presented arguments and experimental facts on *He, that Pandharipande’s (1973)
way of handling the dynamic equation is not convincing.

3.3 Critical Review of the Work on the Solidification Problem

The results of the calculations so far performed are presented in Figure 10.
Even supposing that all of them are correct, the spread in the reported solidification
densities is still too large. Several considerations have to be made. First, not all the
computations have the same degree of reliability and just looking at the various
results without having this in mind can be highly misleading. Second, none of the
computations have yet been repeated by any other group to check the results. An
independent check, especially of the more microscopic detailed computations,
would be highly desirable.

The results of Nosanow and Parish are inscrutable in that they are almost
totally numerical and, since the present author is far from being an expert on
Monte Carlo methods, one cannot but hope that the authors would check time
and again the sensitivity of their results to the possible numerical pitfalls. The results
based on the law of corresponding states, after a pleasant and even convincing

Z Z . > p(g.cm™)

-3 15
a.2x0*  sxi0*  ~7x10* LEXIO 3xi0

N N TR S

NOSANOW ANDERSON  COLDWELL CANUTO  SCHIFF
PARISH PALMER, CHITRE

CHAO

Figure 10 Present status of the results on the solidification problem.
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start, face the serious problem of being too severely linked to the possibility of
representing MUNN) in a Lennard-Jones fashion. Even supposing that the core
of V(NN) is hard enough (which it is probably not) to be represented by a
LJ form, still its fundamental feature of being state dependent cannot be accounted
for by a simple analytic form. Despite several clever tricks devised by many
people, the idea seems to have exhausted its fruitfulness.

Coldwell’s results are more difficult to esteem. In fact his claim that the lack
of a correlation function at short distances equally affects the solid and liquid,
so as to make the results correct on a relative basis, is difficult to check.

Logically the next step is to perform a microscopic calculation. One way of
dealing with that problem is due to Schiff. Here the impression is that a system of
hard spheres is probably not a good representation and that in assuming such a
system one actually introduces too much repulsion. One can always argue that
the same amount of repulsion is also present in the liquid and therefore it should
not matter very much. Even so, one cannot help feeling that if the system that
Schiffhas studied indeed solidifies, it has little to do with a real assembly of neutrons,
whose repulsion is not, as far as we know, a hard-core. Here too, there is no way
to improve upon the computation unless one has the corresponding solution of 256
Schrodinger equations with a potential less repulsive than a hard-core. This would
render Schiff’s treatment much more realistic.

This leaves us with only two microscopic computations by Canuto and Chitre
on one hand and Pandharipande on the other. Canuto and Chitre based their
reason for choosing the t-matrix on 1. the excellent results obtained for *He
(Figure 8); 2. the smallness of the parameter x, indicating the relative importance
of high-order corrections; and 3. the possibility of dealing exactly with the state
dependence of V(NN). On the other hand, Pandharipande preferred the variational
method (LOCV) to deal with points 1 and 2 because he believed he would have a
better way of handling the high-density region. We have already stressed the
poor performance of the LOCV method for liquids (Figure 7) and solids (Figure §)
in the high-density region.

In addition to the purely many-body aspect of the problem, one must add the
series of approximations made in the case of the solid. In fact, had Pandharipande
solved the dynamic equation correctly, the comparison of the results would have
been very significant. As shown in Table 6, Pandharipande’s contention is that by
letting the potentials go from purely replusive to more realistic, the solid structure
is not preferred over the liquid.

We have already stressed how this statement is not fully convincing; it is
unfortunately based on an equation of motion that has, from the very beginning,
been devoided of its angular-momentum features.

In the only two instances in which that equation of motion can be used with
confidence, the solid actually exists (Table 6, first two cases).

On the other hand, in Canuto and Chitre’s calculation, there is one unsatisfactory
feature, whose implications have not been fully understood. The term r- A, being
parity-violating, couples [ with [+ 1, that is, brings into the problem odd waves that
should not be present. At high densities, the potentials of those waves are

© Annual Reviews Inc. « Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1975ARA%26A..13..335C

FTI75ARACAL .“1337 “335TCh

366 CANUTO

repulsive and therefore help solidification, so to speak. Such help should not be
there, and only when a method is devised to eliminate such a spurious effect will
the role of the attraction be ascertained.

In a still unpublished work, R. A. Guyer has succeeded in eliminating the
unwanted waves. When he deals with a purely repulsive potential, equation 2.9,
his energies are in good agreement with those of Canuto, Lodenquai & Chitre
(1974b), as are those of Chakravarty et al (1974). Unfortunately, they all disagree
with those of Pandharipande (column 1, Table 6), indicating that even for a unique
state-independent potential, the LOCV method gives too high an energy for the solid.
This is in line with what was shown in Figure 7, where the LOCV produced too
high an energy for the liquid.

In conclusion, the whole problem seems to have to wait until the odd-waves
contribution in Canuto and Chitre’s treatment has been removed in order to check
the trend of Table 6, that is, that the softness of Reid’s potential prevents solidification.
At the same time, within the variational framework it seems clear that the LOCYV has
shown its limitation in both liquid and solid phase and that a more reliable method
has to be worked out.

3.4 The Equation of State in the Solid Region

Due to the still uncertain nature of the solid core and the rather small changes that
its existence would imply in the relation P = P(g), we feel that one can safely treat
this region as a liquid.

4 THE REGION p > 8 x 10> gcm™3

.

4.1 Generdlities

From a judicious appraisal of the difficulties encountered in the two previous sections,
we must derive a very clear if somewhat negative message. Once we exceed a density
10 times the nuclear density, the behavior of matter can no longer be described by
the two conventional tools: 1. nonrelativistic many-body theories and 2. the concept
of a potential.

The inclusion of hyperons offered the possibility of keeping the energy safely
nonrelativistic and this prompted the extension of nonrelativistic many-body
theories to the hyperonic region. The hope did not last long, because the lack
of detailed knowledge of the hyperonic potentials seriously undermined the reliability
of the results. Even assuming that hyperons can be used to keep the energy non-
relativistic, it is clear that even the most trustworthy many-body methods cannot
be stretched beyond 10 times nuclear densities. What about the NN potential? Even
before one reaches densities at which the concept of a potential itself breaks down,
we are already facing another problem. Different potentials, equally reliable on the
basisof the phase-shift fitting, give rise to unpleasantly different ground-state ¢nergies.
This is a simple manifestation of the fact that the region around 105 g cm™2 is
extremely sensitive to the hard-core region that is left untouched by the phase-shifts
criterion. In addition to this strictly technical question, the concept of static or
quasistatic NN potential is bound to break down. As the density increases, the meson
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Table 6 Energy per particle (MeV) vs density (fm ~3) for different types of NN potentials

Boltzman Statistics

Fermi Statistics

367

np

(fm~3) Solid Liquid Solid Liquid Solid Liquid Solid Liquid
04 245.6 229 — — — — — —
0.6 408.2 399.8 — — — — — —
0.8 589.3 594.5 — — — — — —
1.0 788 810.5 — — — — — —
1.2 1002 1043 370.9 3373 364.1 334.8 — —
1.6 1461 1543 545.7 526.7 536.8 508.6 — —
20 1961 2085 738.8 736.3 729.0 702.0 — —
24 2494 2660 948.1 959.6 9393 909.7 802.9 697.8
2.8 3054 3263 1172 1204 1165 1137 1010 893.4

32 3637 3890 1410 1456 1405 1373 1232 1105.2
3.6 4240 4527 1656 1720 1656 1621 1467 1332.8

V(r) = 6484.2¢ %/x =4[V(D)+3V(CP)] V(N=V(D;) §=0 V() =V(S) S=0 I[=0
=V3P) S=1 V{)=V(D,) §=0, [=2

x=07r Viry=V3Py) S=1

degrees of freedom cannot be eliminated in favor of a NN potential. They must be
explicitly taken into account.

All these considerations call for a relativistic treatment of a many-particle system.
The work that has been published in this area and that we are about to review
is still of an exploratory nature. This is not a point of demerit. In a density
region such as the one we are about to describe, the unknowns are so many and
the pitfalls so frequent and unexpected that any type of incursion is useful, if for
nothing else but to eliminate a few cases from the list of possible alternatives.

4.2 Relativistic Hadronic Lagrangian

Let us consider a system of nucleons interacting via scalar and vector mesons.
We shall omit the pseudoscalar 7, because at high density it cannot play a significant
role. The scalar interaction is a simulation of a 27 system that dominates the NN
interaction at intermediate densities. Even if unnecessary for most of the presentation
to follow, we will think of the vector meson as the @ meson. This identification will
become useful when we need the appropriate coupling constant.

The Lagrangian describing such a system is (h =c=1)

- _J('yp a/z +¥)'// 7(ms ¢2+ ¢3) Imv
LF2,+ g, Yy Ay + g Y.

The first term is the Dirac Lagrangian for free fermions, the second the Lagrangian
for a free scalar boson, the third and fourth the Lagrangians for a massive vector
field (Proca field, F,, = A,,— 4, ), whereas the fifth and the sixth terms are the
interaction terms.

There seems to be little point at the moment in discussing how realistic equation 4.1

4.1
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actually is. The derivation of a nucleon-nucleon potential is an art all by itself and
it would be entirely out of place to get involved in any meaningful discussion of
how many mesons ought to be included in a Lagrangian in order to be in a position
to trust the resulting V(NN). Needless to say, many more mesons than just a scalar
and a vector are needed. If Lagrangian 4.1 does not contain all the necessary
mesons, it surely does not leave out the most important ones, one attractive and
one repulsive. We therefore consider 4.1 as a good reasonable starting point.

4.3 Review of the Results

43.1 THE MEAN-FIELD APPROXIMATION From equation 4.1 we can derive the
equation of motion for the three fields ¥, ¢, and 4, as

(yua#+M—gvyﬂAﬂ_gs¢)l//=0 42
(P —m))p = —go Y 43
(Dz_ml%)Au = _gvlpy# ¢+av ap, Av- 44

In principle one can think of eliminating ¢ and A, in favor of ¥, via 4.3 and 44.
The solution of 4.2 will then yield the nucleon spinor, ¥. If so, the Lagrangian 4.1
can be rewritten as a function of ¥ only, thus providing the desired P = P()
relation through the evaluation of the diagonal terms of the energy momentum
tensor

To= L o0y, b= 0o, 45
o, #

Needless to say, such a program has no chance of being implemented unless one
resorts to some kind of approximation. The method employed can be called a
mean-field approximation or, alternatively, a relativistic Hartree approximation. It
was first used by Marx (1956) and by Marx & Nemeth (1964) for a purely scalar
field, and more recently rediscussed in the context of high-density matter by Kalman
(1974). It was first employed for a pure vector interaction by Zeldovich (1962),
who made an extensive study of the high-density limit of the relation P = cZ¢, both
classically and quantum mechanically, reaching the well-known conclusion that
¢ —1, as ¢ — oo, that is, at superhigh density the velocity of sound approaches
the velocity of light. From now on, the question of the asymptotic behavior of ¢?
will frequently arise and we had better prepare the reader for a series of discrepant
results. Maximum stiffness corresponds to c¢? — 1, whereas maximum softness
corresponds to ¢ —0. For a free gas, the well-known result is ¢ —4. In the
opinion of the author, the balance is presently tilted in favor of ¢Z — 1, even though
it is very hard to find data, astrophysical or otherwise, through which to settle the
question unequivocally. The more extensive study of 4.1 for both scalar and vector
interaction has been performed by Walecka (1974); we review this work.

In the spirit of the mean-field approximation, we perform an average on both
sides of 4.3 and 4.4, by substituting ¢ and 4, with {(¢) and {A4,). The solution
of 4.3 and 4.4 is then trivial. Upon substituting (¢ and {4,)> in 4.2, we obtain a
new Dirac equation in which both the mass and the energy get renormalized. Once
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Dirac’s equation is solved, ¥ is substituted back into 4.3 and 4.4, thus providing the
self-consistent solutions for (¢) and {A4,>. The equation of state is then readily
obtained. We will not write down the analytic expression, equations 3.51 and 3.56
of Walecka’s paper. By inspecting the P = P(¢) relation, it is easy to show that as
¢ — oo, the contribution of the scalar meson is negligible compared to the vector
meson. In the same limit ¢ » oo, Walecka recovers the Zeldovich result :

P = cZ, ez > 1. 4.6

The numerical values for Walecka’s P = P(g) are presented in Table 7.
Even though several points remain to be studied, for example, the stability of the
ground state against fluctuations and the inclusions of more mesons, the idea of a

Table 7 Equation of state for a pure neutron gas after Walecka (1974)

ng p=zg/c? P

(fm™3) (gem™3) (dynescm™ 2) P/pc?
0.70 1.149 x 1013 2.829 x 1033 0.273
0.80 1.367 x 105 4066 x 1033 0.330
0.90 1.604 x 10%° 5.469 x 1033 0.379
1.0 1.859 x 1013 7.034 x 103° 0.420
1.1 2.132 x 1043 8.756 x 103° 0.456
1.25 2.576 x 10*° 1.163 x 103° 0.501
1.4 3.060 x 1013 1.484 x 103° 0.539
1.6 3.768 x 103 1.964 x 103¢ 0.579
1.8 4.547 x 1013 2.503 x 103¢ 0.611
2.0 5.397 x 10*? 3.100 x 103¢ 0.638
2.2 6.315 x 10%? 3.755 x 10%° 0.661
24 7.303 x 10'° 4.468 x 103 0.680
2.6 8.360 x 10'3 5.239 x 10%¢ 0.696
2.8 9.485 x 10'3 6.067 x 1036 0.711
30 1.068 x 106 6.952 x 103¢ 0.723
3.2 1.194 x 10 7.894 x 103¢ 0.735
34 1.327 x 1018 8.893 x 103¢ 0.745
3.6 1.466 x 10'¢ 9.948 x 103° 0.754
38 1.612 x 1016 1.106 x 1037 0.762
4.0 1.765 x 1016 1.223 x 1037 0.770
4.2 1.925 x 10 1.345 x 1037 0.777
4.4 2.091 x 10%¢ 1.474 x 1037 0.783
4.6 2.264 x 101° 1.607 x 1037 0.790
4.8 2.443 x 101® 1.747 x 10%7 0.794
5.0 2.629 x 1016 1.892 x 1037 0.800
52 2.822 x 101¢ 2043 x 1037 0.804
54 3.021 x 10*¢ 2.199 x 1037 0.809
5.6 3.226 x 10'¢ 2.361 x 1037 0.813
5.8 3.438 x 10*6 2.529 x 1037 0.817
6.0 3.657 x 10'¢ 2.702 x 1037 0.821
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constant mesonic field at superhigh density seems a fruitful one. The advantage of
this model, when compared with the ones based on the concept of a V(NN) potential,
is that it is not a perturbative approach with the coupling constant as a smallness
parameter. In a restricted sense, the coupling constant is treated exactly to all orders
of perturbation theory. From the many-body point of view, clearly only the lowest-
order many-body diagrams have been included. For example, neither the nucleon
self-energy nor the polarization tensor in the equation of motion for the mesons are
included in this formalism.

43.2 THE PERTURBATIVE APPROACH An effort in this direction has been recently
undertaken by Zimmerman and collaborators (Bowers & Zimmerman 1973a,b,
Bowers, Campbell & Zimmerman 1973a—). From the relativistic many-body theory
it is known that the pressure and energy density can be computed if one knows
the two-point Green'’s function, solution of the Dyson equation

(PuBu+M+Z)G = 1. 47

The general expression for £ requires the knowledge of G itself and the exact
meson Green’s functions, say . In turn 2 is given as a function of the polarization
tensor, I, whose computation again requires the knowledge of G. This formidable
chain of self-consistent equations is approximated by the authors at the first stage,
that is, in the evaluation of Z, by identifying 2 and G with the corresponding free-
particle Green’s functions, thus obtaining for

Y — ig? &k GOy © 4.8
Given the exploratory nature of this analysis, this series of approximations seems
natural; if the incentive is great enough, one could look for the changes brought
in by the inclusion of more terms. However, this is probably not the most significant
part. In fact, a more serious difficulty is represented by the treatment of the
coupling constant only up to the second order. In this respect, the present treatment
faces the same kind of criticism as those employing a NN potential. A convergence
analysis would imply the evaluation of not just one, but several terms in powers of
g?, with the almost inevitable result that such a series does in fact not converge
under the present circumstances. In our opinion this is the weakest and most
difficult to amend feature of the whole treatment.

The explicit evaluation of 4.8 is carried out by taking y = ys, that is, by supposing
that the nuclear force is mediated by pions. Unfortunately, this is not a very realistic
choice for the high-density regime, where the pions will clearly play a negligible
role and the vector mesons will undoubtedly dominate, as we have seen explicitly
in Walecka’s work. It turns out that in the high-density regime the present com-
putations predict ¢Z —4. This has given rise to some misunderstandings about
the behavior of the velocity of sound as ¢ — co (Ruffini 1973, Cameron & Canuto
1973). Although we have no quarrel with the relation obtained by Zimmerman and
collaborators, we would like to stress that it cannot be taken as a proof that c?
actually approaches % in the real world. The exchange of pions is a good representa-
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tion of the low-density regime and the extrapolation of the resulting P = P(¢) relation
to the high-density regime has only an academic interest. We do not know with
any certainty the behavior of ¢Z as the density increases. The whole point, however,
is that the present calculation cannot be used in any meaningful way in that respect.

If, instead of a pion, the authors had exchanged a vector meson, the comparison
with Walecka’s results would have been more instructive. Due to the general nature
of the Zeldovich argument, we feel that the relativistic treatment of Zimmerman
and collaborators is bound to recover the relation ¢Z — 1, when the vector meson is
introduced. It is indeed hard to believe that the introduction of the self-energy
operator could change the density dependence in such a way as to upset the ¢? — 1
relation. For the sake of completeness, we reproduce below the P = P(¢) relation
obtained by Zimmerman and collaborators, even though it can be used meaningfully
only in the low-density regime.

P=Pyx*[1-24x"*+4 e " x " *(6+6x+3x>+x>)]

& = &o[9/4(8 +x*)—9 e T*(2+2x + x?)—2x°] 4.9
4.5
e sk
500 nh? 9 Mc

433 THE HAGEDORN-TYPE FORMULATIONS The two previous investigations,
though different in their conception and technical aspects, nevertheless have several
features in common. The work we are about to review departs radically from any
field theoretical consideration and the results are therefore more difficult to compare
with anything we have already presented.

Even supposing that we could clear up all the problems that still plague the
two previous treatments, there always remains the possibility that we should actually
go beyond the basic baryonic octet and include the whole host of baryonic resonances
that comprise about 354 baryons up to 2.2 GeV. We do not actually know if such
excited states ought to be included or not, but it is clear that should the answer be
positive, none of the previous formulations would be adequate for such a job.

We review in what follows a series of papers that have dealt with this problem
by postulating that such a host of baryonic states should indeed be accounted for
because it actually determines the behavior of the P = P(e) relation at superhigh
densities. We also present a serious criticism that has caused some misgivings about
the validity of the models.

The simplest way to evaluate the equation of state for a system of excited baryons
is to suppose that the constituents are free, but with their masses adjusted to account
for the interaction. Sawyer (1972) first noticed that the masses of the resonances
that we read from the tables refer to free decaying resonances and may be
significantly different from the ones we are dealing with in a dense medium. Since
the mass shift is actually unknown, Leung & Wang (1973) postulated that the
effective mass spectrum due to the mass shifts obeys a power law, that is, that the
number of baryons below a certain mass m can be represented as

N(m) = Am**. 4.10
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The Equation of state for a free ensemble of baryons with such a mass spectrum
is easily found with the result

P=c%, c=03+2)" L 4.11

If we postulate that the parameter a is the same as the one obtained by fitting
equation 4.10 to the experimentally known masses, then ¢ = 2.9 and ¢Z — 0.11, an
extremely low value, if compared with the previous values of 4 or 1.

Leung and Wang’s work is a particular case of a more general line of approach
due to Hagedorn (1970), who proposed a quasifree or asymptotically free model
for baryonic matter by pointing out that, at very high densities, the interaction
may be (partially?) accounted for by precisely including the whole spectrum of
baryonic states. The point being made is that the existence of the baryonic states
is per se a manifestation of the interaction and therefore instead of trying the
impossible job of taking into account the interactions, one just counts the existing
baryons, establishes a mass spectrum of the form 4.10, or more complicated
(Hagedorn 1970), and then treats the system as free (Frautschi et al 1971, Wheeler
1971). The idea is very simple and very appealing. A general feature common to
all the results obtained with the previous method, or modification of it, is that the
resulting equation of state is very soft. We quote here an expression due to Wheeler
(1971) and Hagedorn (unpublished):

P = pc?[In(p/po)] *
po=25102gcem 3.

412

For p — oo, the velocity of sound goes to zero, contrary to ¢Z — 1, derived before.
How can we assess the value of such theories? We discuss in the next section the
possible asymptotic values of ¢Z and what the experimental data seem to indicate.
For the time being, we would like to present a theoretical criticism to the previous
way of computing P = P(e), due to Sawyer (1972).

In one way or the other, the previous approaches rely on the existing data on
excited baryonic states to fix the parameters of the supposed mass spectrum. This
is clearly true in the polynomial fit of Leung and Wang, and even if it is not
trivially clear in the Hagedorn type of approach, where the parameters of the more
complicated spectrum

N(m) = m® exp (fm) 4.13
are derived theoretically, it is a common practice to show that such behavior at
least does not contradict the existing data. The main point is that the data in one
way or another are actually used. Sawyer has made the valid point, however, that
such masses refer to free decaying baryons, whereas the ones we are interested in

concern particles imbedded in a dense medium. We said before that the Hagedorn
formulation can be rephrased by saying that the chemical potential of one particle

p=(m*+pH*+U(p) 4.14
can actually be rewritten as

p= (m**+p?)2, 4.15
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that is, the two-body interaction can be absorbed in an effective mass. Sawyer’s
point is that the most important contribution to the effective mass is not actually
originating from the two-body potentials, but from the mass shift that the dense
surrounding medium exerts on that particle. Sawyer computed the mass shift by
evaluating the self-energy operator X (see equation 4.7) for a A~ (1236 MeV)
immersed in a neutron medium. The energy shift increases with density and goes
from +140 to +400 MeV in the density region 0.5 < ng < 5 (fm™?), even in the
absence of a two-body interaction.

The effect is of a general nature and is therefore expected to hold for any other
type of resonance. If so, two consequences are immediately obvious:

1. Because each resonance is actually heavier than we thought, it will require a
higher density to have it come in and all the hyperonic configurations presented
before can therefore be drastically changed. For instance, the appearance of A~
at 1.5x 10'> g em ™3 (Figure 6) can actually be quenched. The same argument
would apply to all the previous computations

2. The baryonic-level density formula, as used previously, seems now quite unlikely.
In fact the energy shift can become so large that no bound state beyond the
basic baryonic state is ever populated for any density. If so, the equation of
state would be actually much harder than the one proposed by the Hagedorn
type of formalism

4.4 Concluding Remarks on the High-Density Region

We can only concur with Sawyer that his computation has actually shown, if not
the incorrectness of treating the baryonic resonances as a free system with the mass
spectrum given by the experimental values, at least the strong need for a much
more careful examination of the treatment. In view of this serious difficulty, we
conservatively regard Walecka’s computation as the most adequate and reliable

way, presently known, of describing the region p > 8 x 10*% g cm ™3,

5 THE RELATION P = ¢Z¢ IN THE LIMIT ¢ — oo

5.1 Generalities

We concluded Section 2 on the hyperonic liquid suggesting that the most reliable
P = P(g)relation in the interval 2 x 10** < p < 7.7 x 105 g cm™? is the one provided
by Bethe and Johnson. We concluded Section 4 indicating how Walecka’s work
can be taken to continue the previous equation of state from 8x 10*° g cm™?
upwards. If so, we can consider concluded the problem of the high-density behavior
of matter. The feeling remains, however, that in deciding among the various
possibilities, we should have presented what the experimental data, astrophysical or
otherwise, suggest, instead of using theoretical arguments only.

We have intentionally used theoretical arguments only because the experimental
data have been, until very recently, of little or no use at all. The situation has now
somewhat changed and we describe in what follows the way one can use the high-
energy data on p-p collisions in a meaningful way.
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5.2 Neutron Stars

Despite the fact that neutron stars are indeed the denser objects presently available
in astrophysics, they are not dense enough to allow us to ascertain the behavior
of matter at densities 10 times higher than nuclear density. Rhoades & Ruffini (1971)
computed the mass and radius of a stable neutron star by using a very hard
(c2 - 1) and a very soft (cZ — 0) equation of state starting at 10 times the nuclear
density. The two possibilities are indicated in Figure 12.

The largely expected result was that neither quantity was sensitive to the high-
density behavior of P vs p. Because neither mass nor radius can be measured,
one often employs the moment of inertia. In the popular dipole model for the
Crab nebula it is thought that the energy loss is optical and X-ray synchrotron
radiation in the amount of (Baldwin 1971)

1
0.2 x 1038 | &
* (sec (kpe)?

must be replenished by the loss of rotational energy IQQ. Because the distance
of the Crab pulsar is quite uncertain and it can be anywhere between 1.25 and
2.5 kpc (Trimble & Woltjer 1971, Borner 1973), it follows that I must at least be
such as to satisfy the condition

0.288 x 10%8 < 1QQ.

For the Crab pulsar P = 27/Q = 0.033 sec, and PP = 1.4 x 10'*, so that ] must be
at least greater than 0.62x 10** g cm? If we assume an average distance of
2 kpc, then I must be greater than 1.72 x 10** g cm?. From the work of Rhoades
and Ruffini, the moment of inertia for the two extreme cases can be computed
and found to satisfy these lower bounds. This reiterates the well-known fact that
observational properties of neutron stars cannot be used to study the behavior of
matter at 10 times the nuclear density.

5.3 High-Energy p-p Collisions: The Hydrodynamic Model

Canuto & Lodenquai (1975) have recently proposed that some of the properties of
high-energy p-p collisions could be the most useful data available to study the
behavior of the speed of sound at superhigh density. Experimentally it is known
that the collision of two energetic (10>~10* GeV) protons is accompanied by the
production of a host of other particles whose multiplicity increases with the energy
of the incoming protons.

The two incoming protons are strongly Lorentz contracted in the direction of
motion, the contraction factor being M/E,.. One possible model describing the p-p
collision, the so-called statistical hydrodynamical model, calls for the formation,
right after the collision, of a hot compressed disc with dimensions

An/ h \*/2Mc?
V=—— 5.1
3\m,c E,

that subsequently expands under its own pressure. The energy density in the initial
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disc 1s easily computed to be
p=¢/ct =E/c*V =15 x 10**E, (g cm™?), 5.2

where 2E, = E? is the lab energy in GeV. Typically, for E, ~ 10° GeV, p ~ 107 g
cm™ 3 The hadronic matter inside the hot disc has therefore an energy density
greater than the one encountered at the center of a neutron star. It is to be expected
that the development of such a hadronic matter will strongly depend on the
assumed equation of state. The original model for such a hot hadronic gas given
by Fermi (1950), followed by a revision due to Pomeranchuck (1951), was
systematically worked out in its full mathematical complexity and implications
by Landau (1953). Continuous refinements and improvements on the original
Landau model have been accomplished over the years, notably by Feinberg and
his school [(1965); see (1972) for a full account of the model].

The central point of the Landau model is that the original hot disc evolves
in time in a way that must be described by the relativistic Navier-Stokes Equation

[(P+eU,U,+Pé,,],, =0. 53

This requires an equation of state. Landau, upon using P = 3¢, arrived at a series
of important relations that only recently, with the advent of new experimental
data, have been restudied and reanalyzed. The program of many of the modern
versions of the Landau model consists in solving 5.3 for a general c2, whose value
is then adjusted to fit the data. Needless to say, the job is difficult and several
alternatives exist, but the important point is that, contrary to the neutron star
case, there is a clear prospect of achieving some positive results.

Suhonen et al (1973) analyzed two types of data: the multiplicity N vs energy
and the distribution of N(n) vs 5, the so-called rapidity distributions. The
multiplicity was found to be

N ~ EU-ed+ed, 54

If 5.4 is correct, we must conclude that ¢ cannot be 1, because we know that N
increases with E. The authors’ contention is that ¢ should be close to 0.28 or %
in order to fit the existing data. The argument is not correct, however. In the
first place, formula 5.4 is given only within a log E term, because it is derived from
statistical mechanics. This alone implies that ¢2 = 1 is perfectly legitimate, since the
multiplicity can easily be fitted by log E, if the fitting is started at, say, 10> GeV,
as one should, for the statistical model is certainly not applicable at lower energies.
In the second place, it is not at all clear that the measured multiplicity has anything
to do with the one computed from 5.4. Many intermediate processes have intervened
and the prehistoric age to which 5.4 refers has been obliterated to the point of being
irrelevant. }

The rapidity distribution curve specifically depends upon the Landau model and
the authors claim to have solved 5.3 numerically for P = cZe. Two sets of experimental
data from the Pisa-Stony Brook collaboration have been employed and the result
is that ¢ can be either 3 or ¥ but not 1. We cannot express any sound
opinion on this second point because we do not know how accurate the numerical
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Figure 11 Transverse momentum vs E;. The data are from Feinberg (1972). The solid
line corresponds to ¢Z = .

solution actually is. The boundary conditions imposed by Landau are rather tricky
and can lead to inconsistencies if not treated properly. We have to reserve judgement
on this point.

In recent work by Satz and collaborators (Chaichian et al 1974) the point was
made that the more reliable experimental quantity is probably the constancy of the
transverse momentum with respect to the energy of the incoming protons. This
fact, known for many years, prompted Cocconi (1959) to propose the existence of
an ultimate temperature, an idea at the very basis of the Hagedorn model. Using
the solution of the Landau model for a general ¢Z, Satz and collaborators derived
the following expression for the transverse momentum

(1=l

Pr = poE— 5.5

142

In Figure 11 we present the fit to several experimental points as from ¢? = 4,
that is, p; ~ EY® ~ E}/12 The fit is indeed excellent. Very satisfactory agreement
can also be obtained by using c¢? = 1, since both 5.4 and 5.5 are given to within a

Table 8 Value of the velocity of sound (in units of ¢) from several pionic Lagrangians

. i . . ¢} m;d*
Lagrangian  Lo® g% Lo=i¢™—vé™  [1-P@I-m A" s + (1 porgn
-1 —k
2 z Tt 0 1
n+1 2kn+k—n
Constancy yes if yes if ” es
of pr n» 1 n—k ~ kn ; y

2 L4 1s the Free-pion Lagrangian.
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In E term. The value ¢2 =0 is excluded because with no pressure, there is no
hydrodynamic expansion. As discussed by Canuto & Lodenquai (1975) the value
c2 = 1is perhaps preferable since the In E behavior so obtained is the same as the
one predicted by the multiperipheral model. We therefore assume that ¢2 indeed
goes to one as the energy density goes to infinity. This being the case, one can
not only have a handle on the high-density behavior of the equation of state, but
also use the relation ¢ —» 1 (¢ —> o) to decide among several pionic Lagrangians
that have been proposed over the years. Canuto & Lodenquai (1975) analyzed four
well-known cases with the results presented in Table 8.

A

P //
(dynes cm?®) L/
e @ //
- ol =
P=cge Cs -\L// ///
10¥ ’ 4
i NEUTRON MATTER e //
i 1
L //‘\C;s’-‘ﬁ

1036

UL |

10%

10* —
10

[ S | -
I

10"
pl=¢/c?) gem®

Figure 12 The “best” composite P = P(¢) relation presently available. Up to 7.7 x 10*3
gem™? (curve 1) we employ the Bethe-Johnson results. From 7.7 x 10*% gem™3 (curve 2)
we joined smoothly with the relativistic expression of P = P(¢) given by Walecka (1974).
Also shown are the causality limit ¢, =1 and the free-particle case c; = 1/(3)"/> The
Hagedorn-Wheelex equation of state (curve 3) is also shown for comparison.
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The first two cases were already studied by Milekhin (1962). The third Lagrangian,
originally proposed by Born & Infeld (1934), was used in this context by
Heisenberg (1952). The last one has been recently proposed by Weinberg (1968). The
first and second case can fit the constancy of p; under appropriate restrictions
on the indices n and k. The third one gives ¢Z — 0 and therefore no hydrodynamic
expansion. The last Lagrangian satisfies the p; test because it yields ¢Z — 1. It is the
most modern and reliable Lagrangian and it is comforting that it is also in agreement
with the behavior of matter at very high density.

54 Conclusions

We conclude this review by suggesting what, in our opinion, is the most reliable

equation of state one can presently have covering the range of 10°~10'® g cm™3:

1. Up to a density of 2 x 10** g cm™?

in Table 5(1) can be used

2. From 2 x 10** up to 7.7 x 1015 g cm ™3, one can use any one of the P = P(g)
relations given in Tables 10-12 of Part 1, or Table 4 of the present article.
Because we do not actually know how reliable the computations that include
hyperons are, it is perhaps more appropriate to regard this density regime as a
neutron liquid. This will limit the choice to Tables 10 (Part 1) or 4a. We
would suggest Table 4a

3. Starting at 7.7 x 10*> g cm ™3, we can adopt Table 7. Such a composite relation
is shown in Figure 12, curves 1 and 2, together with the free-particle case
(c2 =), the causality limit (c? = 1), and the Hagedorn-Wheeler equation 4.12,
curve 3.

, any of the relations P = P(g) presented

In conclusion, we would like to stress that, in spite of the impressive advances
accomplished in the past few years, the problem of high-density matter cannot be
considered satisfactorily understood unless further study and work is undertaken
to reveal the missing facets of the hyperon liquid, the neutron solid, and the
superhigh-density regime.
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